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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

" H O D S  FOR CALCULATING THRUST AUGMENTATION AND LIQUD CONSUMPTION 

FOR VARIOUS T'URBOJTI"AFTE8BUR.NEB FUELS 

By James F. bbrris 

Methods are presented  for  calculating  net thrust using a i r  specific- 
impulse data for   var ious fuels. Nomographic solutions are given  to  adapt 
the methods to  turbojet-afterburner  calculations.  These nomographs can 
be used t o  compute net thruets obtained  by  expanding  exhaust  gases t o  
e i ther  a Mach nunher of 1.0 or the ambient s t a t i c  pressure a t  the nozzle 
exi t .  Thermodynamic data f o r  several fuels are also  presented. 4 

" 

Y 

INTRODUCTION 

Turbo jet-propelled aircraft often  require  thrust   augmentation  for 
takeoff,  maneuverability,  and  supersonic flight. Afterburning with high- 
energy f'uels rather than  hydrocarbons may produce greater augmented thrus t  
wi th  lower t o t a l  fuel flows. In order   to   predict  and compare performances 
of  turbojet-afterburner fuels, calculations must be made w i t h  theore t ica l  
and experimental data. 

This report gives methods f o r  computing net thrusts and t o t a l  liquZd 
f lows  f o r  fuels burned i n  j e t  engines having  various component eff ic iencies  
and operating a t  various f l i g h t  conditions. A i r  specific-impulse data, 
which are available for many new fuels ,  are used i n   t h e s e  methods t o  ac- 
count f o r  t he  energy, mass, and nature of coaibustion products. NOMO- 
graphic  solutions are presented  for  calculati 'ng  net thrusts f o r  expansion 
of  exhaust gases t o  either Mxh nuTtiber 1.0 o r  anibient s t a t i c   p re s su re  a t  
t h e  nozzle exit. The ranges of variables   for  the nornographs were selected 
for  calculations  of  turbojet-afterburner performance. 

The calculat ion methods f o r  expansion  of  combustion  products to a 
Mach number of 1.0 are prac t ica l  ones f o r  many present and future turbo- 

ever,  turbojet  engines t h a t  produce high pressure r a t i o s  will require  
variable-area  convergent-divergent  nozzles t o   y i e l d  best performances. 
In these cases, the maximum net thrust would be obtained i f  couibustion 

_I j e t  afterburners having  variable-area  convergent  exhaust  nozzles. How- 
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products w e r e  completely expanded, but   for  many enginea the  nozzle weight, 
drag, and complexity would make complete  expansion  impractical. 

- 

Then, the nomographic methods can be used t o  predict  o r  bracket net 
thrust fo r  a l l  turbojet   afterburners.  Two examples are given t o  show 
calculation  procedures and the  differences in net   thrusts  computed f o r  
expansion of exhaust  gases t o   u n i t  Mach  number and t o  ambient s t a t i c  
pressure. Thermodgnamic data   for  ideal coaibustion of s.evera1 fuels are ... 

presented in   g raphica l  form fo r  convenient use with these calculation 
met hods. 

.. 

. . . .. " 
" 

i 

ANALYTICAL METHODS 

A i r  specif ic  impulse is used as a vaxiable i n  the calculation methods 
of this report .  For ideal, adiabatic combustion of a fuel, a i r  speclf ic  
impulse is defined i n  terms of the  stream thrust obtained by expanding 
the combustion  products ad iaba t ica l ly   to  a Mach number of 1.0. . However, 
air specif ic  impulse can also be expressed as a function of the following 
variables: (1) fuel  type,  (2 )  equivalence  ratio, (3)  t o t a l  temperature,  and 
( 4 )  total   pressure,  a l l  at the  point  considered, and (5) in le t -ab  t e m -  
peratme. Then, fo r  frozen-composition,  adiabatic  expamion, a i r  specif ic  
impulse has a constant  value a t  all points"in the  stream, regardless-of .1 

Mach number. Equation (Bl) confirms th i s .  

a -  

Therefore, a i r  specif ic  impulse is used in  the  equations of t he  
calculation methods t o  represent  the stream thrust ,  energy, mass, and 
nature of combustion  products, The equations  are  geneal,   but  applica- 
t ion  to  turbojet-afterburner  calculations- is stressed. All symbols and 
complete derivations  for the equations i n  this sect ion are given i n  
appendixes A and B, respectively. 

Net Thrust 

A i r  specif ic  impulse was used t o  convert the general  expression  for 
net thrust, 
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S to  the  following  expression: 

c 

If the  nozzle-exit Mach number is  1.0, equation ( 2 )  reduces t o  

I 
This i s  the basic equation used i n  the approximate (figs. 1 and 21 and 
exact (figs. 3 t o  6 )  nomographic.solutions  for  turbojet-afterburner net 
thrust produced by expansion of exhaust  products  through a choked con- 
vergent  nozzle. 

The function f(ylo) is practical-  constant,  varying from 0.793 at  
yl0 = 1.345 t o  0.803 a t  yl0 = 1.225. X f(ylo) = 0.8 is used and 
afterburner losses are neglected, a simplified form of equation (3) 
results. This approxirate  expression  and i t s  l imitationa are discussed 
i n  appendix C.  

For complete expansion of  combustion poducts ,  

p10 = Po 
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and the equation  for net . .  th rus t  becomes 
" - -  - .. .. .. . 

" 

I r .lo-11 

L 

( 4 )  
C 
c 
C 
I 

Figure 7 i s  the  nomographic solut ion for equation (4);  figures 3, 4, 5, 
and 7 comprise the  exact nomographic method f o r  computing the  turbojet-  
afterburner  net  thrust  obtained when conibustion  products are completely 
expanded. 

~ %. . 
""I 

Equat ions  ( 2 )  t o  (4)  can be used t o  compute net  thrust   for  various 
I- 

afterburner fuels if t h e   r a t i o  of a d i e n t   s t a t i c  presswe to  nozzle-exit  
to ta l   p ressure  po/Plo is known. For tCd%T~et;-afterburner  problems, the 
r a t i o  of a f te rburner - in le t   to ta l  pressure t o  a&ient   s ta t ic  pres.sure .. ?? 
Ps/po is g e n e r a w  known. Then, if the   total-pressure  ra t ios   across  the  
flameholder (PS/P5)F, the coribustion zone (P9/PS)M, and the nozzle L 

(Plo/P9)N are computed, po/Plo can be found from the"fo1lowing  identity: 
"" "- .. _. - . "  . .  . - -  . . .. . . " 

Flameholder Total-Pressure  Ratio 

The flameholder  total-pressure  ratio  (PdP5)F and the combustion- 
zone-inlet Mach number % can be  calculated from t h e  following equation: .. ." 

." 

A 

Y 
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4 In order to   use  equat ion (6), the afterburner-inlet  Mach number %, 

* must be  known, and the   duct  area, stream energy, mass, and composition 
specif ic-heats   ra t io  y5, and flameholder  drag  coefficient (CD = m/q) 

must be constant  across the flameholder. 

An approximate  solution f o r  equation  (6) is given  by  line A of fig- 
ure 1. Figure 3 is an exact nomographic solut ion for (Ps/P5)F and %. 

Combustion-Zone Total-Pressure  Ratio 

The combustion-zone to ta l -pressure   ra t io  (Pg/PS)M is given as a 
function  of  values,  upstream and  downstream of the  conibustion zone, of 
air spec i f ic  impulse (S and MBch rimer ( M ~  and ~ g ) ,  and 
r a t i o  of  specific heats (yg and yg). The following equations me va l id  
for a constant-area duct: 

a, 6 

The use of a i r  spec i f ic   impuse   in   equa t ion  (7) eliminates separate treat- 
ments of energy and mass addition and trial-and-error methods across the 
coxtibustion zone.  Approximate (fig. 1 and l ines  A t o  C of fig. 2)  and 
exact (fig. 4 and lines A t o  C of  fig. 5) nomographic solutions  for  eqw- 
t ions  ( 7 )  and (8) are presented. 

Nozzle Total-Pressure  Ratio 
4 

The nozzle  total-pressure  ratio (Plo/Pg)a, the  veloci ty   coeff ic ient ,  
I and a kinetic-energy  coefficient are accepted  conventions that express 

exhaust-nozzle  losses. For convenience, the total-pressure-ratio method 
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was selected as a means of   t reat ing  nozzle   losses- in  the nomographic 
solutions.  The r a t i o  ( Plo/Pg )N i s  assigned i n  the  approximate method. 
In the exact nomographic solutions, (Plo/Pg)N can  be  entered on l i n e  F 
of figure 5. This figure gives the  solution  for  equation (5).  

Assumpbions fo r  Nomographic  Methods 

The three nomographic solutions far net   thrust  depend on the  f o l -  
lowing  assumptions: 

(1) The mass, energy, and nature  of  conibwtion  products are repre- 
sented at any point in the stream by the  equivalent a i r  specific-impulse 
value. 

( 2 )  Values of air specif ic  impulse and r a t i o  of specif ic  heats a re  
constant  across the  flameholder and a l so  from the end of t he  combustion 
zone t o   t h e   e x i t  of the exhaust  nozzle. 

w 
U 
U 
I- 

(3) The afterburner  cross-sectional area I s  constant from the inlet  b -  
t o  the exhaust-nozzle  inlet. 

( 4 )  A l l  energy  and mass additions  occur with negl ig ib le   f r ic t ion  
downstream of the  flameholder and upstream of  the exhaust  nozzle. The . 

complete  afterburner  friction loss is represented by flameholder  and 
exhaust-nozzle  total-pressure  ratios. 

e 

The exact nomographic method of  figures 3 t o  6 computes the net 
thrust produced by expanding  exhaust  gases t o  a Mach  number of 1.0 a t  the 
ex i t  of a convergent  nozzle. The net thrust fo r  expansion of combustion 
products t o   t h e  ambient s ta t ic   p ressure  a t  the exhaust-nozzle  exit  can  be 
calculated with t he  exact nomographic method of figures 3, 4, 5, and 7. 

Figures 1 and 2 are an  approximate nomographic method for computing 
the net  thrust  obtained by expanding  exhaust  products t o   u n i t  Mach n u -  
ber st t he  nozzle  exit. This method can be wed f o r  quick,  approximate 
comparisons of performances of afterburner fuels. The approxlmate nom- 
graphic  solution depends on the  assumptions for  the  exact methods, and 
it is also r e s t r i c t e d   t o  the  following  assumptions: 

(1) The average  value  for the a f te rburner - in le t   ra t io  Of specific 
heats is 1.325. ." . .. .. ." . . 

.. -" 

(2)  The average  afterburner-exit  specific-heats  ratio equals 1.275. a" 

(3) The total-pressure  ratio  across  the flameholder is 0.95. 
.L 
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rl cn cn 
M 

5 (4 )  The product  of  flameholder and exhaust-nozzle  total-pressure 
r a t i o s  equal's 0.92. 

Turbojet-Afterburner Fuel Performance 

The net thrust of an  entire  engine  can be calculated with these 
nomograph  by  using ideal values of air specific  impulse and specif ic-  
hea ts   ra t io  correspondLng t o  combustion a t  the over-all   equivalence  ratio 
of a blend  of  the primary and afterburner fuels. The over-al l  combustion 
process is assumed t o  occur st  the afterburner colnbustion pressure  with 
a i r  at the  turbojet-engine-inlet  temperature. 

Afterburner  performance  can be  cornwed  using  the  following 
convent  ions : 

Augmented net thrust r a t i o :  

*n, eab 
Fn, e 

Augmented liquid. rat io: 

Wf , e& 
wf, e 

Spec i f ic   fue l  consumption: 

Effects  of combustion eff ic iency can be introduced in basic  engine 
I\ and afterburner  calculations with the  following  expression: 
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where g id  and Qat. are ideal and actual  equivalence  ratios  for a given 
value of a t r  spec-ific impulse. This is a n   a p e o x i k t e  method, which i s  
good for  high combust ion  eff ic iencies  . 

3 -  
, - 

-. . ." . " 
.. 

DISCUSSION 

Several methods are presented for computing jet-engine  net thrust. 
In these methods a i r  specific-impulse data for   var ious  fuels   are   used  to  
account f o r  the  energy, mass, and nature of  co-&k%ioh  products.  Appllca- 
t i o n  of the  methods t o  turbojet-afterburner  calculations i s  stressed. t- 

Equation ( 2 )  is a general  expression  for  net thrust. An approximate 
equation for net  thrust  of exhaust gases expanding  through a choked con- 
vergent  nozzle,  neglecting  afterburner  losses and var ia t ion of specific- 
heats r a t io ,  i s  presented i n  appendix C .  An approximate nomographic 
solution  for  expansion  of combuetion products t o  bkch nunher 1.0 a t  the 
exhaust-nozzle  exit i s  shown in   f igures  1 a%-2: Thi6  method depends On 
assumed values of flameholder and exhaust-nozzle  total-pressure  ratios . 
and r a t i o s  of specif ic  heats. 

" .  - 
- ... 

An exact nomographic method for   ca lcu la t ing .ne t  thrust obtained by 
expanding  exhaust  gases t o  a Mach  nuniber of 1.0 a t  the nozzle  exit is 
given in figures 3 t o  6. This solution  incluaes  effects  of combustion 
products  for  various  fuels and  of a f t e z h r n &  'component eff ic iencies .  

Figures 3, 4, 5, and 7 are  an  exact nomographic method for cornput ing 
net thrust for  exp-nsion of exhaust products t o  ambient s ta t ic   p ressure  
a t  the  nozzle  exit. These two exact-nomogYaphic solut ions  ( f igs .  3 t o  6 
and f i g s .  3, 4, 5, and 7 )  are  identical   with  the  exception of  the  function 
J'(Plo,po,yl0) in me net-thrust  equation (compare eqs. (3) and ( 4 ) ) .  This 

" 

difference OCCUTS between l ines  C and E of figures 6 and 7. 
. .  -- 

Examples 

Two examples are given i n  detai l  i n  appendix C t o  show proceduree 
and differences in results obtained with the  three nomographic methods. 
For a turbojet  engine  operating a t  condit-ions-  J'nacated by the following: 
(1) an altitude. of 30,000 feet, (2 1 a f l i g h t  Mach  nuniber of 0.81, and, 
(3) a r a t i o  of a f te rburner - in le t   to ta l  pres8-m- t o  anibient s ta t ic   p ressure  
of 3.98, the  following  results were computed for JP-4 f u e l  used i n   t h e  
pr i w y  engine and afterburner: 

- - . .. .. . ." - . .. 

,* => 
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Calculation method 

Approximate (figs. 
5, and 7): expan- t o  6): expan- 1 and 2):  expan- 
Exact (figs. 3, 4, Exact ( f igs .  3 

s ion   t o  Ml0 = 1.0 s ion   to  sion t o  pl0 = PO 1 Mlo = 1.0 

The results give good agreement f o r  this par t icu lar  example. However, 
when the approximate method f o r  expansion t o  Mach nmiber 1.0 is used for  
specif ic   af terburner  problems, t he  assumptions  of  the  solution  should be 
checked careful ly   against  the ac tua l  component eff ic iencies .  The agree- 
ment of results computed f o r  complete  expansion with those   for  a nozzle- 
e x i t  Mach number of 1.0 stems from the l o w  r a t i o  of  afterburner-inlet 
t o t a l   p re s su re   t o  ambient s ta t ic   p ressure .  

The second example was se lec ted   to  show the d i f fe rences   in   ne t  
thrusts calculated with the two exact nomographic  methods f o r  a turbojet  
engine  operating with a high pressure r a t i o .  Values of a l l  of the varia- 
bles m e  given in appendix C; the following values ind ica te  the operating 
conditions of the turbojet  engine and afterburner using Jp-4 fuel: (1) 
a f l i gh t  a l t i t u d e  of 50,000 feet, (2)  a f l i g h t  Mach nuuiber of 2.5, and 
(3) a r a t i o  of a f te rburner - in le t   to ta l  pessure t o  anibient s t a t i c  pres- 
sure  of 19.04. The following results w e r e  computed: 
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I Calculation m e t  hod 

Exact ( f ig s .  3 
t o  6): expan- 

Exact ( f igs .  3, 4, 

s i o n   t o  pl0 - s i o n   t o  
5, and 7): expan- 

- Po Mlo 1.0 

Afterburner  equivalence rat io,  cp ab 

G' ilEz+z 
Fn lb thrust 112.8 43.5  89.4  29.6 

s fc ,  2.16 1.33 2.73  1.96 lb  thrust 

Fn, eab 

n, e 
F 3.02 2.59 

W f ,  eab I I 4.20 I I 4.20 

c 

The expansion  of  exhaust  gases t o  ambient s ta t ic   p ressure   ra ther  
than t o  Mach  nurriber 1.0 produced 47- and  26-.percent increases   in   net  
thrust   for  afterburner  equivalence  ratios  of 0 and 1.0, respectively.  
The corresponding  decreases i n   s p e c i f i c  fuel consumption are 32 and 21 
percent. However, the  advantages would be attended by increases   in  noz- 
zle  weight,  drag, and complexity. The best performance would be obtained 
using a compromise based on these factors  and net thrust. - . .. . 

Figures 

The meanings and uses of the figures are d iscussed   br ie f ly   in   the  
following outline.  .. - . ". 

Figure 1. - Figures 1 and 2 comprise the  approximate nomographic 
method for  determining  turbojet-afterburner  net  thrust  for  expansion of 
combustion  products t o  a nozzle-exit Mach  nuniber o f  1.0.. Simplifying 
assumptions i n  t h i s  method are  y5 = yg = 1.325; yg = yl0 = 1.275; 

(P6/P5)F = 0.95;  and  (P6/P5)F (Plo/P9)N = 0.92. Figure 1 computes the  
functions of spec i f ic -hea ts   ra t io  and b c h  number, upstream  f(r6,Ms)M 
and downstream f(rg,%)M of  the  afterburner  combustion zone, required 

b 

b 
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-I n 
3 
n 

a t o   c a l c u t e  the  combustion to ta l -pressure   ra t io  (Pg/ps)M.  The value  of 

- is computed while determining  ;f(rg,%)M. 
afterburner combustion-zone-exit  (exhaust-nozzle-inlet ) Mach nuniber % 

Values of a f t e rbu rne r -   i n l e t   kch  number % and of a i r  spec i f ic  
i m p u l s e  upstream = and downstream (S = of the  after- 
burner combustion zone are located on l i nes  A, B, and D, respectively, 
of figure 1. 5 e  s t r a igh t   l i nes  are drawn in  the order  indicated  by the  
arrowheads and number sequence. Then the values  of  f(r6,%)MJ f(r9,%)M, 
and % can be read from l ines  A and E. 

a, 9 

Figure 2. - Figure 2 calculates  the  value of net  thrust divided  by 
the  air-flow rate Fn/wa f o r  expansion  of  gases t o  Mach  number 1.0. In 

d f igure 2, f ( r 6 , ~ s ) ~  and f(r9,%)M from figure 1, ra t io   of   af terburner-  

I i m p u l s e  at the exhaust-nozzle  throat (Sa,1o = Sa,g f o r  frozen-ccmrposition 
3 -  expansion) are located on lines A, B, D, and F, respectively. For the 

i! inlet  t o t a l  pressure t o  ambient static pressure  P5/~0, and air  spec i f ic  
U 

nonafterburning case (but  with  afterburner in place) f(r6,Ms)M = 

4 f(rg,q>MJ (p9;/p6)M = 1*O, and s,,5 = sa,6 = sa,g = s,,10‘ 

With the straight lines drawn as shown, the  value of 

Sa,1o - f(rlo) z] is fixed on l i n e  G. The f l i g h t  a l t i t u d e  and Mach 

number % values (which  remain  unchanged f o r  the afterburning and non- 
afterburning  cases when augmented thrust r a t i o s  are computed) are placed 
on l i nes  E and R, respectively. Then the  appropriate straight l i nes  are 
drawn beginning wi th  t h e  a l t i t u d e  on H, passing through % on K, and 
in te rsec t ing   l ine  L; then  connecting the intersect ion on L w i t h  - 

Sa,1o - f(rlo) 21 on G. Finally, the value  of FJwa can  be read 
p10 

from l i n e  I (if the high-range scales w e r e  used on lines F and G)  or 
l i n e  J ( i f  low-range scales w e r e  used). 

Figure 3. - Figures 3 t o  6 are the exact nomographic method f o r  
determining  turbojet-afterburner  net thrust produced by  expnaing  exhaust 
products to a Mach  number of 1.0 at the nozzle exit. Figures 3, 4, 5, and 
7 are the exact nomographic solution  for  turbojet-afterburner  net   thrust  
obtained w i t h  complete  expansion of  combustion products. Figure 3 yields 
values of total -pressure  ra t io   across  the ,flameholder (P6/P5)F and Mach 
number downstream of the flameholder Q (combustion-zone-inlet Mxh 

4 

- number) . 
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The r a t i o  of spec i f ic   hea ts   a t   the   a f te rburner   in le t  y5 and the  
flameholder  drag  coefficient (CD = AP/q) are located on l i nes  A and D. 
The value of af terburner-Wet   Mch number % ia placed on lines B and b 

F. With the  Btraight lines drawn as indicated,  the  value  of (I?&)?$ 
is given on l ine  E; then  can  be  read from l i n e  G. 

1 

. -  

" 

Figure 4. - Figure 4 computes values of  f(y6,Mg)M,.-f(yg,%)M, and 
% i n  8 manner similar t u  that of f igure  1, but  without  the  assumptions ci4 

of  values of flamhcdder total-pressure  ra t io  and inlet ,and exit ra t io s  P 
of specific  heats that were made to   s implify figure 1. h figure 4 the 
values of r6 = y5, Mg, sa,6 %,5, sa, 9 a sa,lO, and r9 = rL0 are . ." " 

located on l ines  A, B, E, G, and K, respectively. The s t ra ight   l ines  
are drawn as shown, where a l l  lines  are  constructed  without  requiring 
the  points  for  the  values  of f(rGj%)M and -i-(yg,%)M of lines D and - -  " 

H, respectively. These functions are obtained by extending  the f jrst  . 
and last s t ra ight  lines of f igure  4 t o   i n t e r s e c t -  lhies- D and H, 
respectively. 

8 
. . ". . -  

- "" . . 

- . 
If it i s  desired,  the  afterburner  combustion-zone-exit Mach  number 

% can  be  read from l ine J. Values of f ( ~ ~ > % ) ~  and / ( Y ~ , % ) ~ ,  which 7- 

a re  used i n  f igure 5 t o  compute  (PS/P6)M, can be obtained f r o m  l i nes  D 
and H. 

Figure 5.. - Figure 5 y ie lds   e i ther   the  value of exhaust-nozzle- 
th roa t   to ta l   p ressure  Pl0 or the   ra t io   o f -exhaus t -nozz le- thoa t   to ta l  
pressure t o   a d i e n t   . s t a t i c   p r e s s u r e  PlO/po.  The functions f(rG,%)M 
and /(y9,$)M from f igure 4, (P&)F . f Y o m  f i , e  3, t he  assumed . 

nozzle  total-pressure  ratio (Plo/P9)nr, and ei ther   the  af ierburner- inlet  
t o t a l  pressure P5 or the r a t i o  of  afterburner-inlet   total   pressure t o  
ambient s ta t ic   p ressure  P5/po are located an lines A, B, D, F, and H, 
respectively, of figure 5. Again for  the  nonafterburning  case, - 

". "- " 
-_ . 

" 

- 

f ( Y g , % ) M  = f ( r g > % > M >  and (pg/p6jM = 

With the  straight  l ines  constructed 86 shown, e i the r  P1o or 
Plo/po can be read from l i n e  I. 

Figures 6. - Figures 6 are the same  nomograph showing calculations 
f o r  t he  two examples. This nomograph yields  the  value of Fn/wa far c 
expansion of exhaust  gases t o  a nozzle--it. M c h  nuniber. of 1.0 as computed 
by the  exact nomographic method. Figures 6 are identical  with  figure.. 2 
f o r  l ines  E t o  L; therefore,   this  .part  of -f%i$res-6 i s  not described  here. 

. -  

4 
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* If Pl0 was computed with figure 5, its value is  located on l i n e  B 

of figures 6. Then either the   a l t i t ude   o r  the ambient pressure i s  placed 
W on l i n e  A. A s t r a igh t   l i ne  drawn through  these two points  gives  the  value 

of po/P1o on l i n e  C. If PlO/po was calculated  with figure 5, i t s  
value is entered on l i n e  C, and l i nes  A and B are not used. Then, 
yl0 = yg is located on l i n e  D; the   short   length of l i n e  D, representing 
a range of yl0 f'rom 1 .21  t o  1.35, indicates   the small e f fec t  of ylo 
var ia t ion  on the  value of f(rlo) in   equat ion (3). A s t r a i g h t   l i n e  drawn 

through po/Plo on C and yl0 on D yields the  value df [. - f(ylo) E] 
at the  intersect ion  with line E. 

From th i s   po in t  on the  procedures are ident ical   wi th   those  for  fig- 
ure 2. The value  for  Fn/wa can  be  read from e i the r   l i ne  I o r   l i n e  J, 
depending on whether  high  or low scales  w e r e  used  on l ines   F and G. 

Figures 7. - Figures 7 show the  exact nomographic calculat ions,   for  
i the  two examples, of Fn/wa produced  by  complete expans ion of exhaust 

products. These two  nomographs are iden t i ca l  and differ from figures 6 
d only  between l ines  C and E. The points of s imilar i ty   are   not   repeated.  

After po/Plo i s  determined on l i n e  C of f igures  7, its value is 
located on l i n e  C', which crosses   l ine  E. Then the  value of yl0 is 
placed  on l i n e  D, and a s t r a i g h t   l i n e  i s  drawn through  the  points on l i nes  
D and C 1  t o   i n t e r s e c t   l i n e  E a t   t he   va lue  of ~(Plo,po,yl0). From t h i s  
point,  procedures we ident ical   wi th   those of figures 2 and 6. 

The augmented ne t   t h rus t   r a t io  can  be  obtained by dividing Fn/wa 
fo r  the turbojet  engine  with  afterburning by F,/w, for   the   tu rboje t  
engine  without  afterburning  (eq. (9)) .  Thermodynamic data f o r  combustion 
of various fuels must be used with the  nomographs and equations (9)  t o  
(ll) t o   ca l cu la t e  augmented ne t   th rus t   ra t io ,  augmented l i qu id   r a t io ,  and 
spec i f i c   fue l  consumption. Some of these  data  were obtained from refer- 
ences 1 t o  3. 

However, to  simplify  turboget-afterburner  calculations,   these and 
new thermodynamic data were col lected and are presented  in  graphical forms 
convenient for  afterburner analyses . 

L Figure 8. - In  f igu re  8 afterburner  equivalence  ratio is 

- Qid, e (= qB, e qat, e) and over-all   equivalence  ratio qat, cab. The 
given as a function  of ideal primary-combustor equivalence  ratio 
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assumption far this f igure  is t h a t   a l l  unburned fue l   en te r ing  the after- 
burner is  charged to   the   a f te rburner   fue l   quant i ty .  

Figure 9. - Variations of over -a l l   s to ich iometr ic   fue l -a i r   ra t io  
(wf /w; ; r s ,eab  with  primary-conibustor  equivalence r a t i o  using JT-4 primary 
fuel  (qac,e) and with over-al l   equivalence  ra t io   are   given  in   f igure .9, 
These values  are  given for a 60 percent magnesium s lu r ry   i n  JP-4, 
pentaborane, and JP- 4 afterburner fuels. The value of (wf/w,) 8, is 
required  to   solve  equat ions (10) and (11). 

Figure 10. - Figure 10 shows the   var ia t ion of  weight f rac t ion  of ..mn- 
JP-4 f u e l  i n  the  over-al l  fuel mixture with ac-cual  primary-conibustor 
equivalence  ratio  using JP-4 primary fuel and with  over-all  equivalence 
r a t i o .  The afterburner fuels f o r  which these  data   are   given  me a 60 . 
percent magnesium s lu r ry  i n  JP-4 f ie1 and pentaborane. 

Figures 8, 9, and 10 give  relations  to  obtain  values of equivalence 
rat io ,   s toichiometr ic   fuel-air   ra t io ,  a d  weight' f iact iDa of non-JT-4 
f u e l  for the   ove r -a l l   f ue l  m i x t u r e  from similar var iables   for  the sepa- 
rate fuels i n  the afterburner and i n   t h e  primary  combustors (JP-4 fue l ) .  
T h i s  is done because the ideal thermodynamLc properties of the exhaust 
gases leaving the afterburner can be t r ea t ed  as those that would r e su l t  
from burning a blend of the primary and d t e r b u r n e r   f u e l s  with air at the  
engine-inlet   total   temperature (ref. 4 ) .  The thermodynamic properties 
of t h e   m e r b u r n e r  exhaust  gases  also depend on the   s ta t ic   pressure at 
that point. .. . .  

Figure 11. - Figure 11 presents   vmiat ions of  conibustion temperature 
with equivalence  ratio and inlet-air   temperature   for  JP-4 f u e l  combustion 
a t  a pressure of 2 atmospheres. This figme is used. to  convert  given" 
turbine-outlet  temperature data to   af terburner- inlet   equivalence  ra t io  
and a i r  specific-impulse  values  required far the. nomographic solutions.  
The data f o r  a pressure of 2 atmospheres  can be used  without  correction, 
because  the  pressure.  effect is negligible. at low values of temperature 
(or equivalence  ratio) such as those   a t  t he  turbine  out le t  (ref. 3). 

Figure 12 .  - Variations of a i r   spec i f i c  impulse far s l u r r i e s  w i t h  
varying concentrations of magnesium in JP-4 fuel  are  glven  as  functions 
of equivalence  ratio and i n l e t  air  temperatures  for combustion at 2 at- 
mospheres in   f i gu re  12. Corrections  for  pressures  other  than 2 atmos- 
pheree are  given  in..a later figure. The data fo r  JP-4 fuel   a lone (zero 
percent magnesium) can  be used for   af terburner- inlet  = 
and  -outlet (Sa,g = air specific-impulse values, when JP-4 fuel 
is being used i n  the afterburner.  When a 6 0 .  percent magnesium s l u r r y   i n  
JP-4 f u e l  is used as afterburner  fuel, exit..air specific-impulse  values 
(Sa,g = Sa,lo) can  be  obtained from figure 12  by  interpolation. This 
interpolation requires over-all values of"equiv&l&ce r a t i o  and weight 
f rac t ion  of magnesium taken from f igures  8 and 10,  respectively. 

.. . 
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c 
Figure 13. - Figure 13 shows var ia t ions of air specific  impulse with 

equivalence  ratio and inlet-air  temperature  for couibustion at 2 atmos- 
pheres of blends of several  concentrations of pentaborane in JP-4 fue l .  

pentaborane  afterburner fuel is analyzed. 
- The figure can be used, i n  a manner similax t o  that of figure 12, when 

Ideal  values of a i r  spec i f i c  impulse and  temperature f o r  combustion 
at 2 atmospheres are obtained from figures 11 to 13 using  over-all  values 
of  equivalence  ratio and f r a c t i o n  of non-JP-4 fuel from figures 8 and 10, 
respectively.  

Figure 14. - A i r  spec i f ic  impulse  corrected  for conibustion pressure 
i s  given i n  figure 14 as  a function of air specific  impulse  for a conibus- 
t ion  pressure of  2  atmospheres. In general, no pressure corrections are 
requi red   for   the   re la t ive ly  low air  specific-impulse  values  corresponding 
t o  afterburner-inlet   conditions (ref. 3). 

The data given in f-es 8 to 14 are suf f ic ien t   for   ca lcu la t ions  
using  the  approximate nomographic method (figs. 1 and 2) .  However, if 
the exact nomographic  methods are used, afterburner-inlet and -exit values 

quired.  Because the major variable  of the calculat ion method is a i r  

as  a function  of air spec i f ic  i m p u l s e .  

4 of spec i f ic -hea ts   ra t io  (y5 = r6 and yg = ylo, respect ively)  me re- 

c spec i f ic  impulse, it is convenient to define t h e - r a t i o  of specif ic   heats  

Figure 15. - Figure 15 gives  variations of spec i f ic -hea ts   ra t io   for  
ideal conibustion  products  of JP-4 f u e l  and of slurries of 25 and 50 per- 
cent magnesium in Jp-4 fuel. For any one  of these  compositions  the  value 
of   specif ic-heats   ra t io  is defined by the in te rsec t ion  of  any two of the  
l i nes   fo r   cons t an t   a i r   spec i f i c  impulse,  equivalence  ratio, and tempera- 
ture. Ratios  of  specific heats for   over -a l l  magnesium weight  fractions 
below 50 percent  can be obtained  by  interpolation between values   for  0 
and 25 percent or 25 and 50 percent magnesium. 

Figure 16. - Variations of spec i f ic -hea ts   ra t io  w i t h  air  spec i f ic  
impulse  and  pentaborane  concentration  (for ideal exhaust  products at the  
ideal combustion  temperatures)  for  blends of pentaborane  and Jp-4 fuel 
are given in figure 16. The data i n  figure 16 are for conibustion wi th  
a 100' F I n l e t - a i r  temperature at a cornbustion pressure of 2 
atmospheres. 

CONCLUDING REMARKS 

1 Methods were derived to compute j e t - e n w e   n e t  thrust using air  
specific-imprLse data for   var ious  fuels. Solutions for the  methods 
treating expansion of canbustion  products t o  a Mach number of 1.0 and 
to the ambient s t a t i c  pressure a t  the  exhaust-nozzle exit are presented 
i n  nomographic form. The ranges of variables f o r  the nomograghs were 
selected t u  apply  to   turbojet-af terburner   calculat ions.  

- 
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Two examples  are  given  to show procedures  and  differences in net 
thrusts  computed usfng the  nomographic  methods. F x  a turbojet  engine 
operating at (1) an altitude of 50,000 feet, (2) a flight  Mach  number 
of 2.5, (3) a ratio of afterburner-inlet t o t a l  pressure  to  ambient  static 
pressure of 19.04, and (4) with JT-4 fuel  burned in p r b a r y  engine  and 
afterburner,  expaneion of exhaust gases  to  ambient  static  pressure, 
rather  than to a Mach  number of 1.0 at  the  nozzle.  exit,  gave  the follow- 
ing computed  changes: 

% -- 

~. - 

.I 
. . " 

I 

Afterburner 
equivalence 
ratio, 

. 'ab 

Percent  increase 
in net  thrust 

Percent  decrease 
in  specific  fuel 
consumption 

0 

21 26 1.0 

32 4 7  

These  values  do not indicate  effects of mzzle  weight,  drag, and --- - ,.- 
complexity. . .  - b 

Thermodynamic data for  ideal  combustion  of  several  fuels  were  col- 
lected or calculated  and  are  presented i n  graphical farm for convenient 
use  in  turbojet-afterburner  calculations. 

F. 

Lewis Flight Propulsion  Laboratory 
National Advisory Cammittee  for  Aeranautics 

Cleveland, Ohio, January 2 7 ,  1956 
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APPENDIX A 

SYMBOLS 
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A 

a 

CD 

Fn 

f 

M 

m 

n 
c 

P 

P 

9 

R 

Sa 

Sf 

sf c 

T 

t 

r v 
W - 

area, sq f t  

sonic  velocity,  ft  fsec 

drag coefficient,  - AP AP 
9 = 1 ,v2 

net thrust, lb 

f'unc t ion 

gravitational  constant,  32.17 ft /sec2 

b c h  number 

mass rate, slugs fsec 

point nuriber 

total   pressure,   lb/sq ft abs 

s ta t ic   p ressure ,  1b/sq f't abs 

dynamic pressure,  lbfsq f t  

gas  constant, f't-Ib/(lb gas)(OR) 

a i r  spec i f ic  impulse, l b  stream thrust/(lb a i r l s e c )  a t  M = 1 

f u e l   s p e c i f i c  impulse, lb thrustf(1b fuel/sec) 

spec i f i c  fuel consumption, (lb fue l /hr ) / lb   th rus t  

t o t a l  temperature, OR 

s t a t i c  temperature, OR 

velocity,  ft fsec 

f l u i d  weight rate, lb/sec 
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X weight f rac t ion  of condensed phase 

r r a t i o  of specific  heats 

qg couibustion eff ic iency 

P density,  lb/cu f t  

cp equivalence. r a t i o  

Sub6 c r   i p t  s : 

a 

ab 

ac 

e 

eab 

F 

f 

id 

M 

N 

8 

t 

a i r  

afterburner . .  

actual  value 

engine  without  afterburning  (using  afterburner &B t a i l p ipe )  

engine  with  afterburning 

friction  (or  f lameholder) 

fuel . . .. 

ideal   value 

momentum (heat  addition) 

nozzle 

stoichiometric 

t o t a l  

." 
.. 
" 
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0 

1 

5 

6 

9 

10 

ambient locat ion 

at compressor inlet 

at afterburner Fnlet 

downstream of afterburner flameholder (afterburner combustion-zone 
imet ) 

at nozzle W e t  (afterburner combustion-zone exit) 

at  qozzle  exit  



20 

APPENDIX B 

NACA RM E56A23 

DERIVATIONS 

The following are derivations of the  f inal   expressions  (eqs.  ( 2 )  
t o  (8)) used to   so lve   t he  af'terburner performance problem: 

A i r  Specific Impulse 

By def ini t ion,  

mV + PA 
wa 

sa = 

where V = a o r  M.= l.Q. Thcp 

But 

K 

" 

where R is equal t o  the  universal  gas  constant  divided by the  average 
molecular  weight of the  gases  alone. This is equivalent  to  considering 
so l id  or l i qu id  phssee t o  possess zero volume or i n f i n i t e  molecuLar - . . .  

weight.  Therefore, . .  " " 

Net Thrust . " 

By defini t ion,  . .  . " . " . . . . " . . ". 
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Then, the general  expression  for  net thrust at  any nozzle-exit Mach num- 
ber i s  

A s s d n g  Mlo = 1.0, 

Fn P A 0  vo 
- = sa,lo - - - - wa  wa @; 

Therefore, 
1 
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The general  expression far net thrust reduces t o  the following 
equation: 

for complete expansion of exhaust  gases, where . - . .  

PlO = Po 

The nozzle-exit Mach number i s  given by 

while 

&lo - - 

Then, 

the  corresponding sonic velocity i s  

Fn 

a 
-= 
W 

. . " 
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* Assuning an a1 

0 .' 

Flameholder Total-Pressure Ratio 

23 

diabatic flow process with equal  meas  before and a f t e r  
the  flameholder and the  def3nition of flameholder  drag  coefficient, 

But 

Y5-1 

P5(1 + 2 - kg) 

assuming T5 = T6. And, since over the range of conditions t o  be used, 
% = Rg, x5 = x6, and y5 = y6 can be assumed, 

r 
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Substituting i n  the equation for CD yields the drag coeff ic ient  as a 
function of % and %: 

And, rearranging the equation for CD, 

r5+l 

r5 - 1 z(yg-1) 

Combustion-Zone-Exit (Nozzle-Met) Mach Number 

Assuming constant-area frictionless flow in the cambustion zone, 

W 6 
L 

MS 

w 
W 
CD 
t“ 

.c 
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4 cn cn 
M 

i 

1 

Then, 

And, subs t i tu t ing  Sa fo r  i t s   i d e n t i t y ,  

and 
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APPENDIX c * 

USE OF NOMOGRAPHIC SOLUTIONS 

Before  giving  solutions  for two afterburner problem6 by t h e  three 
nomographic methods (figs . 1 t o  7), two approximpte forms of equation (3) " 

produced by expansign  of  exhaust  products t o  a n o n l e - e x i t  Mach numberof  (0 

s h o u l d  be mentioned. As was indicated i n  the equation f o r  net   thrust  a 
CD" . . .. 1 .o, -F 

Fn, 10 
wa (3) 

the function of the spec i f ic -hea ts   ra t io  at the exhaust-nozzle  throat 

a 
r10 

(Z  p o - 1  

vazies from 0.793 at yl0 =-1.345 t o  0.803 at  yl0 = 1.225. 

Therefore, an excellent  approximation  of the net thrust   expression 
is given  by  the f ollowilzg equation: 

Fn, 10 
wa ,= Sa,10 ( l - 0 . 8 % ) - :  p10 

This is the  basic  equation used i n  the approximate nomographic method 
( f igs .  1 and 2 ) .  .. . .  

. .. - ~ . "  "" . ..~ ~ - " " . - - ., . " -e= 

The effects of neglecting  afterburner  total-presgure  losses  can be 
indicated by considerimg the following  approximate . .  equation: 

" - 

and  examining the  error 
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This would be the error i n  Fn,lo for a choked convergent exkaust nozzle 

when Vo = 0. 
r 

L If the  following  afterburner-component  total-pressure  ratios  existed 
but w e r e  neglected: 

(Ps/ps)p = 0.94 

(Pg/pG)M = 1.0 (no afterburning) t o  0.93 (at unit  equivalence  ratio) 

(PlO/Pg)N = 0.97 

the following  ranges of e r rors  would occur at the spec i f i ed   r a t io s  of 
tu rb ine-out le t   to ta l  pressure t o   & i e n t  pressure Pdpo: 

I I I $terburning 

2 
5 
10 
20 

8.1 
1.95 
.88 
.47 

mit 
equivalence 
rat i o  

14.1 
3.7 
1.66 
.78 

IY Vo did  not  equal zero,  t h e  errors  i n  Fn,lo would be larger   than 
those shown.’ 

Most current  turbojet  engines fall  in the P5[po range f r o m  2 t o  
5, where e r rors  caused  by  neglecting  afterburner  losses are large.  
Therefore, some method is required t o  y i e ld  afterburner-component total- 
pressure  ra t ios .  The nomographic solutions that are described  herein 
simplify  and conib ine  the  calculat ions f o r  afterburner  losses and, in 
tu rn ,   y ie ld   so lu t ions   to  the basic  net  thrust equations.. 

Because t h e  details of procedures and operations of the nomographic - solutions  complicate  an  introduction  to  the methods, they  are  given in  a 
Later  section. The s o l u t i o n s  of two afterburner problems are  presented 
first to   reveal’ the  general   appl icat ion of the nomographic methods. The 
following examples illustrate the use  of f igures  1 to  7: 
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Values of FJwa and s f c  ( w i t h  and  without  afterburning) and aug- x 

mented r a t i o s  of net   thrust  and l iqu id  weight for  afterburning at unit  
equivalence  ratio are t o  be pred ic ted   for  a turbojet  engine The m 

following  data were obtained  in   s imulated  f l ight   tes ts :  

Altitude, f t  . . . . . . . . . . . . . . . . . . . . . . . . . .  30,000 
Fl igh t   Bch  number, MO . . . . . . . . . . . . . . . . . . . . . .  0.81 
Cmpreesor-inlet total temperature, TI, 9 . . . . . . . . . . . . .  460 CI1 

Afterburner-inlet  total  temperature, T5, ?R . . . . . . . . . . .  1660 (D 

Afterburner-inlet total pressure, P5, lb/sq It abs 2500 r 

Afterburner-inlet   mch nuniber, % . . . . . . . . . . . . . . . .  0.22 
Engine  combustion efficiency, qg,e . . . . . . . . . . . . . . . .  0.98 
Fuel . . . . . . . . . . . . . . . . . . . . . . . . . .  JP-4 (octene-1) 

The predicted  afterburner  characterist ics are as  follows: 

Flameholder  drag  coefficient, APIq . . . . . . . . . . . . . . . . .  2.0 
Afterburner  equivalence  ratio, qab . . . . . . . . . . . . . . . . .  1.0 
Afterburner  conhution  efficiency J flg,ab . . . . e . 0.85 . .,- 

Nozzle total-pressure  ra t io ,  (Plo/P9)N . . . . . . . . . . . . . .  0.97 
F u e l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  JP-4 

- 

ED 

. . . . . . . .  

- 
With the preceding  values and the thermodynamic data r e l a t ing  Sa, y, and 
cp from figures 11, 12, and 15 (o r  combinations of f i g s .  13, 14, and 16), 
the following  values ase obtained: 

= 0.0678 Sa,5 = 100 

Then, using equation (12)  , 
0.242 

'ac,e 0.98 = - =: 0.247 

'id,eab = 0.242 + 0.85(1 - 0.242) = 0.886 

yl0 = 1.256 

Augmented l i q u l d   r a t i o  = 
Wf,eab 1.0 $.05. 

Wf,e - 0.247 
"= 
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Solution by Approximate Nomographic h t h o d  (Figs.  1 and 2 )  

The following me t h e  assumptions for the approximate method: 

(1)  ass and  energy  contents of stream at any point are represented 
by the  equivalent air specif ic-  i m p u l s e  value. 

(2)  Air spec i f ic  impulse and r a t i o  of  specific heats aze constant 
both  before and after the combustion  zone. 

(3) The afterburner  cross-sectional mea is constant  from  the  inlet  
to  the  exhaust-nozzle inlet. 

(4) All energy  and mass additions  occur  with  negligible  fr iction 
downstream of the flameholder  and  upstream  of the  nozzle. 

(5) A convergent  exhaust  nozzle w i t h  unit throa t  Mxh n M e r  is used. 

(6) The value of the   a f te rburner - in le t   ra t io  of spec i f ic   hea ts  is 
1.325. 

(7) The af terburner-exi t   specif ic-heats   ra t io  is 1.275. 

(8) The to ta l -pressure   ra t io   across  the flameholder is 0.95. 

(9) The product of t he  flameholder  and  exhaust-nozzle  total-pressure 
rat ios   ( represent ing a l l  assumed f r i c t i o n   l o s s e s )  is 0.92. 

Determination of net thrust w i t h  af terburnim.  - 
(A) Solu t ion   for   to ta l -pressure   ra t io   across  combustion  zone 

(pS/p&f: 

(I) Locate the value (led) f o r  % (0.22) on t h e  left sca le   o f   l ine  
A of figure 1. 

(2)  Place a point (2-b) on l i n e  B of figure 1 at 100, the value of 
sa,5 = sa, 6' 

(3) Draw a straight l i n e  through the two poin ts   (bab  and  2eab) 
t o   i n t e r s e c t   l i n e  C at point 3&. 

T (43 Locate Sa, = Sa, = 163 on line D of figure 1 (point 4e,b) . 
(5) Construct a s t ra ight   l ine   th rough  po in ts  3,,b and 4,& 

crossing  l ine E of figure 1 at point 5,&. 
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( 6 )  Read the  value of f(Y6,Mg)M from the   r i gh t   s ca l e  of l i n e  A of i 

f igure  1 and locate  the  corresponding  point [ f  (rG,h)M = 1.0343 on l i n e  
A O f  figure 2 (point 6,,b ) . 

(7)  Place a point on l i n e  B of f igure  2 at f(rg,%)M = 1.104, 
which is the  value  given by t h e  left  sca l e  of line E of f igure  1. 

(8) Draw a s t ra ight   l ine  through  points  6,b and 7,,b t o   i n t e r -  % Sect U-ne C at  point 8eab, which gives  the  total-pressure  ratio  acrosa (0 r 

t h e  conibustion  zone (Pg/PS)M as 0.937. 

(9) At 30,000 f e e t  po = 629 p0md.s per square foot  absolute and 

p5/p0 = 3.98; locate   this   value on line D of figure 2 (point  geab). 

(10) Construct a s t ra ight   l ine  through  points  aeab and geab cross- . 

{ 11) Place a puint (lle&) on l i n e  F of figure 2 at Sa, = 163 
( lef t  sca le  ) . 

i n t e r sec t   l i ne  G a t  point lzeab, where sa, - '0 1 = 124.2. 
plo 

(D) Determination  of Vdg: 

(13) Locate t h e   a l t i t u d e  of 30,000 f e e t  on the  left sca le  of l i n e  H 
(point 13e& 1, which g ives   the   ad ien t   sonic   ve loc i ty  ag (995 1. 

(14) Place a point (14eab) on line K of f i g m e  2 at the  value of the 
f l i g h t  Wch nunfber (& = 0.81). .. 

(15) Construct a straight  l ine  through  points and 14eab 
intersect ing line L of figure 2 a t   the   va lue  Vo/g  = 25.0 (point  15eab). " 
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(E) Solution for  value of net thrust = f(Sa,lO,P1O,po,ylO,Vo): 

(16)  Finally, d r a w  a s t r a i g h t  l ine  between  points 12,,b and 15eab 
crossing l i n e  I at point 16,ab, which yields  the answer, 

Determination of net thrust without  afterburnim. - 

(A} Salution for value of f (Pl0, po,yl0) - - (1 - 0.8 3): 
p10 

- (2)  Point 2, on l i n e  D is ident ical   wi th  9,,b (Pg/po = 3.98). 

(B) Determination of value of /(Sa, lo,P1o,po,ylo) - - Sa,l0(l- 0.8 E): 
(4)  Locate = salg - - s,, 6 = = 100 on l ine  F of figure 2 

using t he   r i gh t   s ca l e   (po in t  4e). 

(6) Points 6,, and 8, on figure 2 are ident ical   wi th   points  

l3eab, I4eab> and l5eab- 

(D) Determination of net thrust = f(Sa,lO,P1O,pO,ylO,Vo): 



32 NACA RM E56A23 

(7) D r a w  a straight  l ine  connecting  points 5, and 8, and crossing I 

l i n e  J a t  the  answer (point ge),  
-" 

Results. - The r e s u l t s   f o r   t h e  approximate nomographic solution for  
M ~ o  = 1 .O are  as follows: . .. .. $j . 

- . . . . " . . . . , - a  
P 

= 52.7 lb thrust/(   lb  air/sec 1 

(2)eab 
= 99.2 lb thrust / (  lb  air/sec ) 

a fc  = (0*247~c0~0678)(3600~ = 1.14 (lb fuel/hr)/ lb thrust e  52.7 
(eq. (11)) * 

sfceab = (0*0678'(3600r = 2.46 (lb fuel/hr)/lb thrus t  99.2 - 

Solution by Exact Nomographic  Method fo r  MIO = 1.0 (Figs. 3 t o  6) 

The following  are  the  assumptiom  for  the  exact nomographic method: 

(1) The mass and energy  contents of the  stream at any point  are 
represented by the  equivalent a i r  specific-impulse  value. 

" - .. .. 

( 2 )  A i r  spec i f ic  impulse and r a t i o  of specific  heats  are  constant 
both  before and a f t e r  the  combustion  zone. 

-. - 

(3) The afterburner  cross-sectional area Fs constant from the inlet 
(upstream of the flameholder) t o  the exhaust-nozzle  inlet (combustion- 
zone exit). 

(4)  All energy and m8ss additions occur wi th  negl igible   f r ic t lon 
downstream of' the  flameholcler and upstream of the  nozzle. v 

(5) A convergent  exhaust  nozzle  with unit throat  Mch number is used. 
- 

c 
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v Determination of net t&t with  afterburning. - 
(A) Solution  for  value of (p&5 IF: 
(1) On l i n e  A of figure 3 locate  point  leab at y5 = 1.33. 

- 

n 
s, 
0 (3) Draw a s t r a igh t  l i ne  through  points &b and 2,ab t o  ?ieab, 

the   in te rsec t ion   wi th  line C of figure 3. 

? 
d i n t e r sec t  l i n e  E of figure 3 at the  total-pressure  ra t io   across   the flame- 

(5) Construct a s t r a igh t  line through  points zeab and keab t o  

3 
holder ( P ~ / P ~ ) F  = 0.937 (point 5,,~,). 

c (B) Solution for value of Mg: 

(6) Mark the   point  % = 0.22 on line F of figure 3 at 6eab. - 
(7) Draw a s t ra ight   l ine   th rough  po in ts  5eab and 6eab crossing 

l i n e  G of figure 3 at % = 0.236,  which is point 7,,b. 

(9)  Place  the  value % = 0.236 (from line G of f i g .  3) on line B 
of figure 4 at point 9eab. 

(10) Draw a s t r a i g h t  line through  points eeab and 9eab t o  inter-  
s ec t  loeab on l i n e  C. 

(11) M e n d   t h i s   s t r a i g h t  line t o   c r o s s  line D of figure 4 at p i n t  
lleab, where f(T6,Mg)~ = 1.035. 

* (12)  Locate  the  value of sa, 6 = sa,5 = 100 at  point lzeab on 
l i n e  E. 

.L (13) Construct a s t r a i g h t  l ine  passing through points loeab and 
12,& and cross ing   l ine  F at pint 13,,b. 
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(14)  Place  point 14eab on l i n e  G at Sa, = 163. w "" 

(15) Draw a s t ra ight   l ine  through  points  13,,b and 14,,b t o  
in te rsec t  line I at  point lEieab. 

(16) mrk   the   va lue  r9 = 1.256 a t   po in t  16eab on l i n e  K of fig- 
ure 4. .. . . I. . .. " " . . . " 

(17)  Construct a s t ra ight   l ine   through points 15eab and 16,ab t o  8 a 
cross   l ine  J a t  point 17,a;b, which gives % = 0.455, i f   the   va lue  of 
tha t   var iab le  is desired. 

P 

(18) Extend t h i s  straight line t o  Intersect  line H a t  point laab, 
where f ( y g , q ) M  = 1.1075. . .. 

(D)  Solution  for  value of (P&S)M: 

(19)  Locate the  value f(rG,%) = 1.035 (from l i n e  D on f ig .   4 )  on - 
l i n e  A of f igu re  5. as point lgeab. 

(20) Place f ( y 9 , % )  = 1.1075 (from l i n e  H of f i g .  4 )  on l i n e  B of 
figure 5 a t  point 2Oeab. 

(21)  Draw a s t ra ight   l ine  through  points  19-b and 2Oeab t o  
in t e r sec t   l i ne  C at  point 21eab, giving  the  value of the  total-pressure 
r a t io   ac ross   t he  conibustion zone (P91P6)M = 0.9347. 

(E) Solution for the  value of (P ldP5  )F m: 
, J  

(22) Locate ( P ~ P ~ ) ~  = 0.937 (from l i n e  E on fig. 3) on Une D of 
f igure  5 as  point -22,,b. 

(23)  Construct a s t r a igh t  line psesing  through points 21eab and 
2zeab and  crossing l i n e  E at point 23eab, where (P&)F,M = 0.876. 

(24) Wrk the nozzle t o t a l -p re s su re   r a t io  (Pl@9)N = 0.97 at point 
24eab on l i n e  L of f igu re  5. 

I 

(25) Draw a s t ra ight  lFne through points 23eab and 24,,b t o  
in te rsec t  line G a t  point 25eab, where the  ta ta l -pressure  ra t io   acros8 - 
the   af terburner  IS given as (Plo/P5)F M N = 0.851. . .. 

3 3  
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(3’) Determination of vdues  of po/pl0: 

(26) If the  af terburner- inlet   to ta l   pressure (P5 2500 lb/sq ft  abs) 
is known, locate  that value at point 26eab on =ne H of figure 5 (using 
t h e  l e f t  s ca l e ) .  If the  pressure r a t i o  Pg/po = 3.98 is known, mark it 
as point  26iab on line H (us ing   the   r igh t   sca le ) .  

(27)  Construct a s t ra ight   l ine   through  points  25eab and 26eab o r  
25eab and 26hab t o   i n t e r s e c t  line I of figure 5 at e i the r  point 27,,b 
where Plo = 2130 pounds per  square  foot  absolute  {right  scale) or  point 
27hab where (Pldpo) = 3.38 { l e f t  scale), respectively.  

(28) If Plo was determined at point 27eab, l oca t e   t he   a l t i t ude  
of 30,000 feet (or the anibient pressure, if known) on l ine  A of figure 
6 (a) at point 28eab. 

c (29)  Place a point 2geab on line B at Plo = 2130 pounds per  square 
foot  absolute (from l i n e  I, point 27eabr of f i g .  5). - 

(30) Draw a s t r a igh t  line through  points 2aeab asd 2geab to 
c ross   l i ne  c of 6(a)  at point me&, giving po/Plo = 0.297. If 
Pldpo was determined a s  point  27Lb on l ine  I of figure 5, enter  it 
on line C of   f igure  6(a)   using  the  lef t   scale .  

(G) So lu t ion   for   the   va lue  of 

(32)  Construct a s t r a i g h t  line passing  through  points 30eab and 

31eab and crossing  l ine E a t  point 32eab, - /(rl0) %] = 0.76. 
p10 

(H) Determination  of  the  value of Sa, 
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(34) Draw a s t r a igh t  line ,through  points 32,ab and 3Seab t o  inter- " 

". 

sec t  l i n e  G a t   p i n t  giving  the  value sa, 10 

(I) Solution f o r  value of Vo/g: 

(35)  Locate  the  alt i tude (30,000 f t >  on l i n e  H of f igure  6(a)  a% 
Point 35eab 3 which gives the sonic  velocity (right scale) .  3 

. .  r 
W 

(36) Ehter the  value % = 0.81 as point 36,,b on line K of 
f i g u r e  6 (a )  . 

(J ) Determination of net thrust : 

(38) D r a w  a s t r a igh t  line between  points and 37eab in te r -  t 

secting line I of f igure   6 (a)   a t   po in t  38eab, where the f i n a l  r e s u l t  is 

Fn given as - = wa 9., 10 

Determination  of  net thrust xlthout  afterburning. - 
(A) Solution f o r  value  of ( Plo/P5) : 

(1) The following  points f o r  the  engine with and without  afterburning 
a re   i den t i ca l :  

. " . .. 

Figure 3: le and leab, 2e and 2eabJ 3e and 3eab, 4e and 

4eab3 5, and 5e&r 6e and %ab> and 7, and 7 4 3 .  

Figure  6(a): 13, and 28,abj 2oe and 3Seab, 21, and 36eab, 

and 22, and 37,,b. 
- 

merefore,  no explanation w i l l  be given where these points a r e  
encountered . 

'1 
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(2)  Locate  (P&)F = (Pg/Ps)F,M = 0.937 on l i n e  E of figure 5 a t  
point 8, (taken from point 5, on l i n e  E of fig. 3). 

(3) Draw a s t ra ight   l ine   through  points  8, and 9, t o   i n t e r s e c t  
l i n e  G of figure 5 a t  point loe, giving  the  af terburner   total-pressure 
r a t i o  (Plo/P5)F,M,N = 0.91. 

{B) Determination of value of PO/P~~: 

(4) Construct a s t r a igh t  l ine through  points 10, and ( if  P5 
is used) o r  10, and ll; .[if P5/p0 is used)  t o   i n t e r s e c t   l i n e  I of 
f igure  5  a t  point 12, (Plo = 2280 lb/sq f t  abs) or  point 12; 
(Pldpo = 3.60), respectively.  

(5 ) Place a point ( 14=) on l i n e  B of figure 6 (a) at the value 
Plo = 2280. 

I 

(6) Draw a straight  l ine  through  points 13, and 14, t o   i n t e r s e c t  

of figure 5  (point 12&), enter   that   value on l i n e  C of f igure  6 (a) us ing  
t h e  l e f t  scale .  

- l i n e  C a t  15ey where po/Plo = 0.279. E Pldpo was found on line I 

(C) Solut ion  for   the  value of 

(7 )  Locate yl0 = y5 = 1.33 at point 16, on l i n e  D of' f igure  6 ( a ) .  

(8) Construct a s t ra ight   l ine  through  points  15, and 16, inter- 

sec t ing   l i ne  E at point 17e, giving  the  value [l - f ( T l o )  %] t 0.778. 
PlO 

(D) Determination of the  value of Sa, -f(rlo) 31 : 
PI0 

(9)  Enter  the  value  Sa,l~ = S,, = 100 on line F a t  point 18,. 

t (10) Draw a s t ra ight   l ine   through  points  17, and 18, t o   c r o s s  

I l i n e  G of figure 6(a )  at point 19,, where Say lo[ 1 - /(rl0) 81 = 77.8. 
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(E) Solution  for  net  thrust: 

(11) Construct a straight  line  between  points 19, and 22, inter- 
secting  lFne J of figure  6(a)  at  point 23,, which  gives  the  final  answer, I 

" Fn - Sa,lo [. - f(rlo) k] - - VO = 52.8. 
wa Q 

Results. - The  results fo r  the  exact  nomographic  method f o r  
MlO = 1.0 are  the  following: 

($)e 
= 52.8 lb thrust/(lb  air/sec) 

(5) = 98.4 lb thrust/(lb  air/sec) 
iWa/eab 

0.247)(0.0678)(3600) - sfc, = 1 52.8 
- 

sfceab 98.4 
(0.0678)(3600) = 2-48 

Fn,eab 98.4 1,86 at 

Fn, e 
"= - 52.8 

Solution  by  Exact  Nomographic Method  for  plo = PO 

(Figs. 3, 4, 5, and 7) 

The  assumptions  are  identical  with  those for the  exact namographi,c 
method for M10 = 1.0 (figs. 3 to 6) with  the  exception of the  nozzle- 
exit  condition. In' this  exact  nomographic  method  (figs. 3, 4, 5, and 
7),  it is assumed  that  the  combustion  products expand to the  ambient 
static  pressure  at the exhaust-nozzle exit. 

. .  

" 

Determination of net  thrust  with  and  without  afterburning. - The 
procedures for the  exact  calculation  method for p10 = po are  ldenti- 
cal with  those of the  exact  nomographic  sol&ion  for MlO = 1 .O with 
the  exception of the  steps  for  determining  the f . u n c t i o n  /(PLo,pO,Ylo) 
i n  the  net  thrust  equation  (compare  eqs. (3 )  and (4) ) . This differ- 
ence  occurs  between  lines C and E of figures 6 and 7. The points of 
similarity will not be discussed. 

e 

- 
. .. _. 
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Procedure  for  using fi-e 7. - The  procedure  for  determining 
j(P~~,p~,r~~)plo~po using  lines C' , D, and E of  figures 7 is  as  follows: 

(1) Locate  the  value of the  ratio of ambient  static  pressure  to 
nozzle-exit  total  pressure  (po/Pl0, taken from m e  C) on line C' (point 
3oAab for  the  turbojet  engine  with  afterburning or point 15; for  the 
nodterburning case). 

(2) Place  the  value  of  nozzle-exit  specific-heats  ratio ylo on 
line D (point 31ab or 16,) . 

(3) Draw a straight  line  through  these pobts (31eab and  3OAab 
or 16, and 15$ to intersect  line E at  the  value of 
~~plo,po,rlo)p  (point  32eab  or 17,). 

10-0 

Results. - The  results for the  exact  nomographic  method  for - plo = v g .  7(a) ) are the following: 

- @e = 54.3 lb thrust/[lb  airlsec) 

(2)eab = 100.8 lb thrUBt/(lb  sirlsec) 

Comparison  of  ReeuLts 

Comgarison o f  the  results  by the three  methods  reveals  good  agree- - ment in all categories.  However,  w-hen  the  approximate  nomographic 
method  for Mlo = 1.0 is used f o r  solutions  to  specific  afterburner 
problems,  the  asslmrptions of the  method  should be checked  carefully 

c against  the  actual  component  characteristics.  The  agreement  of  results 
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calculated  for pl0 = pg  with  those  for Ello = 1.0 occurred  because  the 
turbojet  engine  of  this  example has a low ratio  of  afterburner-inlet 
total  pressure  to  ambient  static  pressure. 

". . 

- ." - 

The  following  example shows net  thrusts  and  total fuel flows  com- 
puted  for a turbojet  engine  operating with a high  pressure  ratio, with 
and  without  afterburning.  The  following  variables  are  assigned: 

Altitude, ft . . . . . . . . . . . . . . . . . . . . . . . . . .  50,000 
Flight Evlach nmber, MO . . . . . . . . . . . . . . . . . . . . . . .  2.5 W 

Compressor-inlet  total  temperature, T1, % 884 

t' 
U 
I- .- . . . . . . . . . . . . .  

Afterburner-inlet  total  temperature, T5, % . . . . . . . . . . .  2001 

Afterburner-inlet  Mach  number, M5 . . . . . . . . . . . . . . . .  0.246 - 
Engine combustion  efficiency, T B , ~  . . . . . . . . . . . . . . . .  0.99 
Fuel (primary engine) . . . . . . . . . . . . . . . . .  ~ p - 4  (octene-1) 
Afterburner  flameholder  drag  coefficient,  AP/q . . . . . . . . . . .  1.6 
Afterburner  equivalence  ratio, gab . . . . . . . . . . . . . . . . .  1.0 
Afterburner  combustion  efficiency, qB,ab . . . . . . . . . . . . . .  1.0 
Fuel  (afterburner) . . . . . . . . . . . . . . . . . . . . . . . .  Jp-4 
Nozzle  total-pressure  ratio, (Plo/P9)N . . . . . . . . . . . . . .  0.97 

Ratio  of  afterburner-inlet  total  pressure  to  ambient  static 
pressure, ~ 5 / p o  . . . . . . . . . . . . . . . . . . . . . . . .  19.04 

With  the  preceding  values  and  figures 9, 11, 12, 14, and 15, the  follow- 
ing values  result: (z)s = 0.0678 sa,5 = l l o  

0.236 
'Pac,e 0.99 = - = 0.238 

The  ratios of nozzle-exit  total  pressure  to  ambient  static  pressure 
were  computed  from  figures 3 to 5 (calculations  not shown) : 

= 17.36 (3eab = 16.11 
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- Figure 6(b) gives the calculations f o r  net thrusts produced by ex- 
pansion of ccenbustion products t o  a Mach nmber of 1.0 a t  the exllaust- 
nozzle exit. The nomographic calculations  for  net   thrusts  result ing 
from complete  expansion of exhaust gases are  shown i n  figure 7(b). The 
results  obtained with both methods are given i n  the following table: 

. 

Nozzle-exit  condition 

Ml0 = 1.0 p10 = Po 

Afterburner  eqfivalence r a t i o ,  
ab 

0 1.0 1.0 0 

15 lb thrust 1 29.6 1 89.4 1 43.5 1 112.8 w ' l b  a i r / sec  a 

1 sfc, 1 1.96 1 2.73 1 1.33 1 2.16 
I I I I 

wn, eab I Wf,e 

The following are the  detailed procedures and operations used when 
solving afterburner problems i n  general with the nomographs f o r  the ap- 
proxinrate  and exact methods. The construction  lines and numbering 
system used f o r  the  previous example are followed  (Lab, zeabt scab . . . , 
or  le, 2e, 3e . . ., f o r  computing sequences with points f o r  the  engine 
with afterburner or the engine  alone,  respectively, and arrowheads repre- 
senting  construction  direction of straight ~ n e s ) .  

Approximate namographic method f o r  M10 = 1.0. - Figures 1 and 2 
c 

are  based on the assumptions  given Fn the ANALYTICAL "IHOIE section 
and the previous example f o r  the approximate nomographic  method f o r  ex- 

nozzle exit. 
- pansion of combustion products t o  a Mach number of 1.0 at  the exbust- 
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Figure 1: 
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. .  
c 

s t e p  (1) - 
Point  leab. - Locate Mg on t h e   l e f t   s c a l e  of line A of .. . .. I 

figure 1. w (D 
CD 
t" 

Operation  leab. - Mg and the  assumptions (y5 = y6 = 1.325 
ana (P6/P5)F = 0.95) determine ~g (eq. (6)); ~g and y6 y ie ld  - 

4)o " Y,) 
t h e  following functions : required 

t o  compute % and  represented by the  locat ion on l i n e  A ( sca le  

not shown), and f(r6~bf6)M = required t o  compute 

r6% 

(Pg/P6)M. Read the  value of f(Y6&)M from the r ight   sca le  of - 
line A t o  be used as point 6e,b on l i n e  A of figure 2.  

- 

Point Zeab. - Locate Sa, 6 on l i n e  B. 

Operation 2eab. - The point  represents  division by sa,6. 

Point 3,ab. - Draw a s t r a igh t  l i n e  through  points  leab  and 
Zeab t o   i n t e r s e c t   l i n e  C a t  point 3,,b. 

Operation 3,&. - The point  represents  the  value of 

Point 4,,b. - Locate 3,, on l fne  D. 

Operation 4,,b. - The point  represents  multiplication by 
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D 
.h- 
3 

Point scab. - Draw a straight l i n e  through points 3,,. and 
4eab to i n t e r sec t   l i ne  E at point 5eab. 

Operation 5eab. - The point  represents the value of 

(eq. (711, which with the a m m p t i o n  (yg = rlo = 1.275) yields the 
.value  of % (right sca le  of line E); % and yg i n  turn give the 

Function " r 9 4  = f(rgjhfg)M required to compute the 

value of fPg/ps)M' Re&- f(rg,Mg)M from the l e f t  s ca l e  of line E 
t o  be used as point ?e& on i i n e  B of figure 2. 

- Figure 2: 

Point 7eab. - Locate f ( y g , ~ ) M  (value from point 5eab of 
fig. 1) on line B. 

Operation 7,ab. - The point  represents division by f ( ~ ~ , % ) ~  

Point 8eab. - Draw a straight line through points 6eab and 
7,ab t o   i n t e r s e c t  line C at point 8,,b. 

Operation 8eab. - The point  represents the value  of the total- 
pressure ratlo (Pg/P6)M across the cornbustion zone: 
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Point 1,. - Locate at 1.00 on l i n e  C. 

Operation 1,. - The point  represents  exine  operation  without .I . 

afterburning.  Calculations for  this   condi t ion ere similar t o   t hose  
with  afterburning f'rom here, and points  for  the  engine  alone  are 
noted  particularly  parenthetically (ne = neab - 7 ) .  

1- 

Point geab (or ze). - Locate  (p5/p0) on l i n e  D. - 
Operation geab (or 2,). - The point  represents  multiplication - 

of  reciprocal of (Pg/Pe)M by /(rl0) 2 pg )where assumed 
'6 

(1 f Y l O )  
y10- .. . - "_ 

values  give = 0.92 and f (1-10) = = 0.8. 
r10 

Point lQab (or 3e). - Draw a s t r a igh t  line through  points 
aeab {or le) and Scab (or 2,> t o   i n t e r s e c t  line E a t  point 

IOeab (0. 3e) 

Operation 10eab (or 3,). - The point represents  the  value of 

1 
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Point ne&, (or 4e). - Locate Sa,1o on l i n e  F, 

CSa,10,eab = 'a,g,eab; 'a,5,e = Sa,6,e - 'a,9,e Sa,lO,e.t - 

Operation && (or  4e). - The .point  represents  multiplication 
by Sa,lo. NCYITE: Lines F and G have high ( left)  and low (r igh t )  
range scales.  If the  high-range  scale is used on l i n e  F (Sa,lo), 
t h e  /(Sa, Plo, po,rlo) value w i l l  be  that   given by the  high-range 
sca le  of l i n e  G, and t h e  final answer FJwa must be read on line I. 
If the  low-range sca les   for  Sa, and /(sa, 10, Plo, PO, r10 1 me 
used, t h e  final result Fn/wa must be read on l i n e  J. 

Point 1Z-b (or  se). - &aw a s t ra ight   l ine   th rough  po in ts  
loeab (or  3e> and 1l-b (or   to   in te rsec t  line G at point 
l2eab ( O r  5e>. 

Operation Eeab. - The point   reResents   the  value of 

Mark t h i s   p o i n t   t o  be used i n   s t e p  (5). 

Step (4) 

Point a,& (or 6e). - Locate   the   f l igh t   a l t i tude  on l i n e  H 
( l e f t  sca le  1. 

Operation 13eab (or 6e). - The point  represents  the  sonic 
veloci ty  ab (f%/sec) at the   f l i gh t   a l t i t ude ;  a. can be read from 
the  r igh t   sca le .  

Point 14,b (or 7e). - Locate the f l i g h t  Mach nurnber % on 
l i n e  K. 
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Point scab (or  8e). - Draw a straight l ine  through  point6 . " 

13eab (or 6e) and 14eab (or 7,) t o  intersect   l ine  L at point 

l5eab (or 8e) 

Operation 15,ab (or 8,). - The point  represents  the  value of 
vo/g = (a&)/& 

Point Xeab (w ge). - Draw a straight l i ne  through  points 
12eab (or 5e) and 1Seab (or ae) to   in te rsec t  line I (or  l ine J) 
a t  point 16,,b (or ge) .  

" 

Operation 16,,b (or ge). - The point  represents the  value -of v 

Exact nomographic  method fo r  M~-J = 1.0. - Figures 3 t o  6 are based 
on the assumptions given in the ANALYTICAL METHODS section and the ex- 
amples f o r  the exact nomographic  method f o r  expansion of exhaust  products 
t o  Mach number 1.0 a t  the nozzle exit. 

" 

" 

Figure 3: " 

Point Zeab (o r  z e ) .  - Locate % on l i ne  B. 
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3e) represents the  value of th i s   func t ion .  

Point Ceab {or  4e). - Locate  the  value of CD = AF[q on 
l ine D. 

Operation scab (or se). - me point   represents   the  value of 

(;)F = 1 - CD c a  

Point 7,~, (or  7e). - Draw a s t r a i g h t  line through  points 
5,& (or 5e> and 6eab (or 6e) t o  i n t e r s e c t   l i n e  G at point 7,,b 

(or 

. . Operations 6eab (or 6e>  and 7eab (or - (P&)F a d  
% (also  y5)  determine ~6 (eq. (6)).   Point  (or rep- 
resents  the value 02 %. R e a d  Mg to be wed fo r  point geab on 
l i n e  B of figure 4. The var ia t ion  of y5 in equation'  (6) also 
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a f f e c t s  Mg t o  a very small extent  over  the  range of Mach nunibers - 
used. In the case  yielding  the maximum difference i n  % due t o  
y5 variat ion,  the e f f ec t  was less than 0.1 percent  as y5 changed 1 

from 1.29 t o  1.35. For t h i s  reason  the  influence of y5 varriation 
is not  included in s tep  (3). .. 

Figure 4: 
w 
W 
W Step (1) .e 

Point 8,,b. - Locate y6 = y5 on l i n e  A of f igure 4. 

Point loe&. - Draw a s t r a i g h t   l i n e  through points and 
geab t o  in t e r sec t   l i ne  C at point 10,b. - 

Operations geab, loeab. - y6 and % determine a flmc- 
t i o n  necessary t o  compute Ms. Point 10-b represents  the  value - 

g)(l 4- r6) 
of 

Point Ueab. - Extend the   s t r a igh t  line drawn t o  loca te  point 
t o   i n t e r s e c t   l i n e  D at point %ab. 

compute (Pg/P6)" R e a d  the  value of j ( Y 6 3 4 ) M  for  point u e a b  
t o  be used to   loca te   po in t  lgeab, l i n e  A, f igure  5. 

Point - Locate Sa, 6 = Sa,5 on line E. 
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-I 

5)  
r) 

n 

Operation 12,&. - The point  represents  division by ~ , , 6 .  

Point 13kab. - Draw a s t r a igh t  line through  points  loeab and 
12,ab t o   i n t e r s e c t   l i n e  F at point 13,,b. 

Operation 13,,b. - The point  represents  the  value of t he  

$)(l -I" r6> 
function 

+ &)Sa,6 

Step (3) 

Point 14eab. - Locate the value of Sa,g on l i n e  G. 

Operation 14,ab. - The point  represents  multiplication by 
Sa, 9' 

Point - Draw a straight line through  points 13eab and 
14eab to intersect l i n e  I at point 15eab. 

Point 17,b. - Draw a s t r a i g h t   l i n e  through points 16,b and 
15eab t o   i n t e r s e c t  line J at point 17eab. 

Operation 17e,b. - The function  determined as point 15,b 
and rg (16ab) f ix   t he   va lue  oE % that can be read from point 

eab 

Point 18,,b. - M e n d   t h e   s t r a i g h t  line drawn to   l oca t e   po in t  
17,ab t o   i n t e r s e c t  line E at point 18,,b. 
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Read t h e  value f o r  / ( Y ~ , % ) ~  a t  point lBeab t o   b e  used as -pint 
20eab, line B, f igure  5. 

Figure 5:  

Operation 2Oeab. - The point  represents  division by f ( ~ ~ , % ) ~  - 
Point 21eab. - Draw a s t r a igh t  line through points lgeab and 

20eab t o   i n t e r s e c t   l i n e  C at point 2bab .  

Operation 2 L b .  - The point  represents  the  value of equation 
(8) : 

w a 
CD 
P 

point 2zeab. - Locate ( P ~ P ~ ) ~  (from point 5,,b) on l i n e  D. 

Operation 22eab. - "he  point  represents  multiplication by 
(PdP5fF'  

.. -. 
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3, 
r) 

n 

3 
4 

Point 23eab. - Draw a straight   l ine  through  points  2leab and 
2zeab t o   i n t e r s e c t   l i n e  E at point 23,,b. 

Operation 23,&. - The point  represents the value of 

Point 8,. - Locate the  value of {Ps/P5)p (from 5e) on l i n e  E. 

Operation 8,. - The point  represents  engine  operation  without 
afterburning (Pg/Pg = LOO). Calculations for this condition are 
similar t o   t hose  w i t h  afterburning from this point on. Therefore, 
po in ts   for  the engine  operating  without afterburning are noted 
parenthet ical ly  (ne = neab - 15). 

Step (3) 

pressure   ra t io  (PlofPg)pr on l i n e  F. 
Point 24eab (or gel.  - Locate the  selected  nozzle   total-  

Point 25eab (or 10,). - Draw a s t ra ight   l ine   th rough  po in ts  
23eab (or 8e) and 24eab (or ge) t o   i n t e r s e c t   l i n e  G at point 
25,ab (Or 10e) 

Operation 25eab (or loe}. - The point  represents  the  product 
of afterburner-component  total-pressure  ratios: 

(3) =(3) (3) ( . i N  
'5 F, M,N '5 F '6 M 

Step (4) 

Point 26,b (or I&>. - Locate the value of P5 on l i n e  H. 
[Point 26Aab (or =A>. - If the engine  compression r a t i o  is known, 
loca te  p5/p0 on l i n e  H. 3 
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Operation 26eab (or I&). - The point  represents  multiplica- r 

t i o n  by P5. (Operation 26Aab (or 11;). - The point  represents 
mult ipl icat ion by P5/p0. 1 

Point 27eab (or 12e) .  - Draw a s t ra ight   l ine   through  points  
25,ab (or 10,) and 26eab (or 11,) t o   i n t e r s e c t   l i n e  I a t  point 
27eab (or 12e). [Point 27hab (or 12;). - Draw a s t r a i g h t   l i n e  w 

through  points 25,ab (or 10,) and 26Aab {or 11;) t o   i n t e r s e k t  
l i n e  I a t  point 27Aab (or 12;). 1 

(D -a 
- P  

Operation 27,,b (or l Z e ) .  - "he point  represents  the  value .of 

the  nozzle-exi t   to ta l   pressure P1o = P5 (g)F, M,N . Read t h i s   v n u e  

on t he   r i gh t   s ca l e  of l i n e  I t o   b e  used as point 2Seab (or  14e), 
line B, f igure  6. [Operation 27Aab (or 12;). - The point repre- 
sents  the  over-all   engine compression r a t i o  P1dpo. Read. t he  value - 
f o r  Pldpo a t   po in t  27Aab (or 12;) t o   b e  used as point 30eab 
(or l.5e), l i n e  C, f i g .  6.3 NOTE: The two scales  (P5 and P5/po; 
Pl0 and Plo/po) on each of l i nes  H and I are not r e l a t ed  by pOsi- 
t i ons  on the  lines.  Therefore, if one sca le  is used i n i t i a l l y  
(e.g., a sca le  =ked with I ) ,  the  corresponding  scale must be  used 
fo r  t he  next l i n e  ( ) . 

" 

Figure 6: 

Step (1) 

point 28eab (or Ue). - Locate the a l t i t u d e  on l i n e  A of 
figure 6. " 

Operation 28,,b (or ",). - The point  represents  the  values 
of  ambient  pressure po (given on the  r ight   scale .  of l i n e  A) a t   t h e  
f l i g h t   a l t i t u d e .  . .  .... 

" 

I- . 

Point 2geab (or  14e). - Locate Pl0 (from  point 27eab (or 
12,)) on Une.B. . . . . . .  ... " 

Operation 2geab (or 14e). - The point  represents  division 
by p10* . . .  

.- 
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Point 30eab (or 15,) .. - Draw a s t r a i g h t  line through  points 
2aeab (or 13,) and 2geab (or 14e) t o   i n t e r s e c t  l ine  C at point 
30eab (or Ee). If (P1o/po) was determined  for  point 27Aab f o r  
12&), loca te   the   va lue  on the l e f t  s ca l e  of l ine  C. 

Operation 30eab (or 15e). - The point   represents   the  value of 
equation ( 5 )  : 

The l e f t  scale  (Pldpo) is t h e   r e c i p o c a l  of the r igh t   sca le .  

Point 31-b (or 16e). - Locate yl0 = yg on l ine D. 

Operation 31eab (or 16e). - The point  represents  multiplica- 
t i o n  by 

Point 32eab (or 17,). - Draw a s t r a i g h t  line through  points 
30eab {or 15,) and 31eab {or 16,) t o   i n t e r s e c t  line E at point 

z2eab ( O r  17e). 

Operation 32e,b {or 17e). - The point represents the   va lue  

Steps (3) t o  ( 5 )  f o r  figure 6 correspond t o  s teps  {3) t o  (5) 
for figure 2, with 32eab (or 17,) being a value  comparable t o  loeab - (or 3,). 
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Exact nomographic  method fo r  pLo = po . - Figure6 3, 4, 5, and 7 

comprise the  exact nomographic  method fo r  complete expansion of exhaust 
products. T h i s  calculation method is ident ical  w i t &  the  exact namo- 
graphic method for Mlo = 1.0 with  the  exception of the  function 
f(P1o,po,yl0) i n  the.  net  thrust  equation . (compare . . . . ." eqs. . - (3) - . and (4) ) . 
This difference nccurs between l ines  C and E of figures 6 and 7. With 
these  regions  excepted, a l l  equations, assumptions, nomographs, pro- 
cedures, and operations for figures 3 t o  6 apply to the  exact namo- 
graphic method f o r  pl0 = The points of similarity will not be . 

repeated. - . " . .  

The following  are  procedures and operations  for  determining 

Point 30Aab (or 1%) . - Locate the value of po/Plo (from point . " . " - 

30e,b or  15, on l i ne  C )  on line C' . 

1. Breitwieser, Roland, Gordon, Sanford,  and Gammon, Benson: Summary 
Report on Analytical  Evaluation of Air and Fuel Specific-Impulse 
Characteristics of Beveral Nonhydrocarbon Jet-Engine  Fuels. NACA 
RM E52L08, 1953. . .  . 

2. Tower, Leonard K., and Gammon, Benson E.: Analytical Evaluation of 
Effect of Equivalence  Ratio,  Inlet-Air Temperature, and Cambustian 
Pressure on Performance of Several  Possible Rm-Jet Fuels. NACA 
RM E53G14, 1953. 
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- 3. Tower, Leonard K.: Analytic Evaluation of Effect of Inlet-Air Tem- 
perature and Combustion Pressure on Canbustion  Performance of Boron 
Slurries and Blends of' Pentaborane in Octene-1. NACA RM E55A31, 
1955. I 

4. Turner, L. Richard, and Bogart ,  Donald: Constant-Pressure Combustion 
Charts Lncluding Effects of Diluent  Addition. NACA Rep. 937, 1949. 
(Supersedes NACA TN'S 1086 and 1655. ) 
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lb thrust 
l b  air/eec 

HACA RM E56A23 

Figure 1 .  - Nomograph f o r  approximate  determination of Mach  number domatream of cmbuation sone 
and functions  used  to compute total.-preseure  ratio acroeb:CUmD~$tion zone. (A large working 
copy of th i s   f i gure  may be  obtained by using the repucBt cXRI  bound in  the back of the  report.) 
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(a) Example 1. 

Figure 6 .  - Ifoo~po~p~ph for determioation of net tlmst for a*pansion of e.xhaust proauats to nozzle-exit Mach 
mrmber of 1.0. (A lar@ working copy of t h i n  figure may be obtained by using the reguest card bound irr 
the back of the report.) 
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Ideal primary-couibustor equivalence ratio, 'Pu,~ 
Figure 8. - variation of afterburner equivalence ratio w i t h  

ideal primary-combustor equivalence ratio and over-all 
equivalence ratio. 
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Figure 9. - Over-all stoichiometric fuel-air ratio for three 
afterburner fuels used with Jp-4 fuel in primary combustors. 
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A c t u a l  primary-ccmibusfor equivalence  ratio,  @ 
ac ,e 

Figure 10. - Weight f r a c t i o n  of non-JT-4 f u e l  i n  ove r -a l l   f ue l  mixture 
f o r  two afterburner fuels used with Jp-4 fuel i n  primaxy  conibustors. 
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Figure 11. - Variation of combustion temperature with 
equivalence r a t i o  and in le t ,  a i r  tenlperature f o r  JP-4 
fue l  a t  conibustion pressure of 2 atmospheres. 

c 
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.. 

Equivalence ratio, Cp 

Figure 13. - Variation of air specif1c.impulse with  equivalence ratio, 
pentaborme concentration, and inlet air temperature for blende of 
pentaborme and Jp-4 fueb  at conibustion preesure of 2 atmospheres. 
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160 17 0 180 190 

Air specific impulse at 2 atn, Sa, air lb th rus t  

Figure 14. - Variation of air specific imgulse  with 
combustion pressure and a i r  specific impulse at 
conibustion pressure of 2 atmospheres f o r  inlet air 
temperature of 1000 F. 
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Figure X .  - Variation of specific-heats  ratio  with air spec i f ic  
impulse,  equivalence  ratio, and mgnesium  concentration  for com- 
buetion of magnesium slurries in JP-4 fuel  at combustion pressure 
of 2  atmospheres. 
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Figure 16. - Variation of specific-heats ra t io  vi th  air speciflc impulse and panta- 
borane concentration far carbustion of blends of pentaborape an8 Jp-4 fuels at 
cambustion pressure cs 2 atmospheres for iriLet a b  temperature of l00O F. 
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